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Blind Source Separation

Separate a set of source signals from their observed mixtures without
relying on prior knowledge about the sources or the mixing process. The
term ”blind” refers to the lack of information about the mixing process
and the nature of the source signals.
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Learned Representations

The Independent-Listeners Problem

1

1Roeder, Geoffrey, Luke Metz, and Diederik P. Kingma. 2020. “On Linear Identifiability of Learned
Representations.”
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http://proceedings.mlr.press/v139/roeder21a/roeder21a.pdf
http://proceedings.mlr.press/v139/roeder21a/roeder21a.pdf


Independent Component Analysis (ICA)
2 dim. example - minimizes the Gaussianity - rotation
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https://open.ruhr-uni-bochum.de/sites/default/files/2019-04/IndependentComponentAnalysis-LectureNotesPublic.pdf


Identifiablility

Definition: Models Statistical Identifiability

A model class is said to be statistically Identifiable if
∀s, s ′ ∈ I : ps (x) = ps′ (x) ∀x → x = x ′

Identifiablility in essence means a methods like say ICA can do blind
source separation up to tolerable ambiguities.
—–

Given the set of rules in a method of decomposition - is it possible to
recover - a set of unique solutions to the source and mixing. More
often than not methods are non-identifiable.
—–

Tolerable/Unavoidable ambiguities in linear ICA:

• Scaling

• Permutation
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Nonlinear ICA Not Working

Example of a failed Nonlinear ICA:

Most Nonlinear ICA’s are not identifiable, hence they tend to
recover spurious solutions to source and mixing terms.
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Nonlinear ICA Working

Example of a somewhat successful Nonlinear ICA. Time-Contrastive Learning (TCL)
method.

Limitations: Does not work i.i.d data, loosely Identifiable up to source squaring. 3

3TCL
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https://arxiv.org/pdf/2202.01913.pdf


Identifiability in Nonlinear ICA

Non-linear ICA methods are generally not statistically Identifiable, so they made a
looser definition for identifiability in terms of equivalence relation.

Definition: Equivalence relation

An equivalence relation on set A is a binary relation, equivalent or false, which
should satisfy, for ∀a, b, c ∈ A

• Reflexivity a a

• Symmetry a b → b a

• Transitivity (a b) ∧ (b c) → a c

An Equivalence relation is less strict than the statistical identifuability. As
equivalence relation on set A imposes partition into disjoint subsets, each cor-
responding to an equivalence class.

Which leads to the following: Tolerable/Unavoidable ambiguities in Nonlinear ICA:

• Scaling

• Permutation

• Non linearly Transformed sources
h(s1),h(s2)...h(sn), where ’h’ is a nonlinear function for ’n’ sources
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Identifiability in IMA with Auxiliary Variable

Identifiability in IMA in essence is very similar to the case as in earlier
slide but with an additional caveat, of Auxiliary variable restriction i.e
cannot do BSS for i.i.d’s.

Introduction of an auxiliary variable U allows to make the sources
conditionally independent.

i .i .d
[
s ∼ Ps|u

]
, Ps|u =

n∏
i=1

(
Psi |u (si |u)

)
With suitable assumptions identifiability can be achieved without
restricting the mixing function, sometime up to ”Equivalence class” Blind
source separation.
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Brief Introduction to Causal Inference

Simpson’s Paradox

4

4Brady Neal
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https://www.bradyneal.com/causal-inference-course##course-textbook


The Principle of Independent Mechanisms
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Effect of Intervention

Mapping relation between Altitude and Temperature:

P(a, t) = P(a|t)P(t)

P(a|t):T → A

P(a, t) = P(t|a)P(a)

P(t|a):A → T

which of the two structures is the causal one?

Intervention establishes the causal relation to be P(t|a):A → T
5

5Elements of Causal Inference, 2.1
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ICM and the Thermodynamic Arrow of Time

Initial state and dynamical law: If s is the initial state of a physical system and M a
map describing the effect of applying the system dynamics for some fixed time, then s
and M are independent. Here, we assume that the initial state, by definition, is a state
that has not interacted with the dynamics before.

Reverse scattering
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Independence in Cause Effect Relations

The initial state of particle or input signal contains no information about the object/
mixing-Mechanism, and vice versa.

Hence input and the mixing mechanism are independent from each other.

Independent Causal Mechanisms: The causal generative process of a system’s
variables is composed of autonomous modules that do not inform or influence each
other.
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Inferring Causal Directions with Deterministic Mapping

Information geometric causal inference (IGCI), example in 1-Dimention

If the structure of the density of PX is not correlated with the slope of f,
then flat regions of f induce peaks of PY . The causal hypothesis Y → X
is thus implausible because the causal mechanism f 1 appears to be
adjusted to the “input” distribution PY .
6

6Information-geometric approach to inferring causal directions
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https://reader.elsevier.com/reader/sd/pii/S0004370212000045?token=C5DBEE24C8346D6BB21F1338FC0FA0B8F77CD536D90BD3B1E020EF56ACB26BBE9F741EA449F63759BF497EAC080EF57D&originRegion=eu-west-1&originCreation=20230410225656


Source Separation with ICM

Classical ICM is not useful got Blind Source separation. As it will only impose
Independence between all the sources or the cause, and the mixing function or the
mechanism.

Formalising ICM with the Information Geometric Causal Inference (IGCI) since IGCI
also assumes deterministic mapping between cause and effect.

Formal relation∫
log |Jf (s)| p (s) ds =

∫
log |Jf (s)| ds ·

∫
p (s) ds

=
∫
log |Jf (s)| ds

cause: s and its distribution p(s)
mechanism: f and its Jacobian Jf
effect: x = f(s)
—
Since ICA accomplishes source and mixing separation, it can be expanded to have
additional separation between the source terms themselves, accomplishing
decomposition!
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Independent Mechanism Analysis

7

7Independent mechanism analysis, a new concept?
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https://arxiv.org/abs/2106.05200


Source Separation with ICM

The additional separation between source can be achieved by an
orthogonality condition:

This is done by imposing Independence on the partial derivatives ∂
∂si

(f ),

where s =
∑n

i=1 si with distribution p (s) =
∑n

i=1
∂
∂si

(f )

Hence the Mechanism by which each source si influences the observed
distribution is ”Independent.”
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The Principal of Independent Mechanism Analysis

Principal of IMA

The influence of the source terms si on the observed distribution is
disentangled with the following relation imposing independence:

log|Jf (s)| =
∑n

i=1 log
(
det

[
∂ f
∂si

(s)
])

IMA extends IGCI with and orthogonality condition ∂ f
∂si

on the columns of a Jacobian:
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Again Comparing ICM & IMA
For n=2, two sources:

IMA: Decouples Cause and Mechanism [Right]∫
log |Jf (s)| ds =

∫ (∑
nlog
i=1

(
det

[
∂ f

∂ si
(s)

]))
p (s) ds

IGCI: Decouples the influence of each independent component and Mechanism [Left]∫
log |Jf (s)| p (s) ds =

∫
log |Jf (s)| ds

IMA enforces independence between the contributions of different sources si to the
mixing function f as captured by f /si .
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The IMA Contrast and Learning Function

Constructing Contrast function and then the Learning function
for unsupervised decomposition:

The IMA Contrast CIMA

CIMA (f , p (s)) =

Es

(∑n
i=1

(
log

∣∣∣∂ f
∂ si

(s)
∣∣∣)− log (det (Jf (s)))

)
=

Es

(
log

(∏n
i=1

(∣∣∣ ∂ f
∂ si

(s)
∣∣∣))− log (det (Jf (s)))

)
Regularized maximum-likelihood objective CIMA

Lagrange multiplier for constrained optimzation:
L (g ; x) = Ex [log pg (x)]− λ CIMA

(
g−1, py

)
Where g is the learnt unmixing and y = g(x) the

reconstructed sources.
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Results

Optimizing:

L (g ; x) = Ex [log pg (x)]− λ CIMA

(
g−1, py

)
Blind source separation is only achieved when λ > 0.
For λ = 0 i.e the maximum likelihood estimation (MLE), the learnt
decomposition’s are spurious/false.
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Miscellaneous Information

• Disentanglement in many way is an Inverse problem
- (”ill posed”)

• Additional constrains through prior known knowledge might
very likely lead to better decomposition’s (as seen iVAE),
however this might also lead to misleading solutions

8

8Inverse problem, Rüland Angkana
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https://www.mpg.de/14201135/mis_jb_2019


Thank you
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