
EFFECT OF NOISE IN ACTIVE PARTICLE
RESERVOIR COMPUTING

Bachelor’s thesis by
Shashank Shetty Kalavara

Under the supervision of
Dr. Xiangzun Wang & Prof. Dr. Frank Cichos.

UNIVERSITÄT LEIPZIG

Leipzig, Saxony

November 23rd, 2022

Second examiner Prof. Dr. Bernd Rosenow.
Submitted in partial fulfillment of the requirements for the degree of

B.Sc., International Physics Studies Program

Effect of Noise in Active Particle Reservoir Computing

Acknowledgement

I would like to thank Dr. Xiangzun Wang and Prof. Dr. Frank Cichos for their
supervision and patience, and Prof. Dr. Bernd Rosenow for graciously accepting to be
the second examiner for my thesis. Additionally, I would like to thank Thomas de Paula

Barbosa, Daniel Stephen Radyuk, and Eduardo Mayorga for the proofreading. And
lastly, I am grateful to my family for their support, Tomasz Niewiadomski for the

collaboration at the beginning of the project, Sächsisches Staatsministerium für Kultus
for keeping tuition free in Leipzig, and Lieferando.de for keeping me employed.

I

Effect of Noise in Active Particle Reservoir Computing

Contents

1 Introduction 1

2 Theoretical background 2
2.1 Time-delayed Oscillations of Active particles 2

2.1.1 Active particle oscillations . 2
2.2 Brownian motion-induced noise . 6

2.2.1 Brownian Motion . 6
2.2.2 Brownian motion on oscillating active particle 9

2.3 Reservoir computing . 11
2.3.1 Recurrent neural networks, a brief discussion 11
2.3.2 Echo state networks and time series prediction 12
2.3.3 Activation State/Kernel : x(n) . 13
2.3.4 Readouts out of the reservoirs . 15

3 Experimental analogous computational methods 18
3.1 The reservoir . 18

3.1.1 Nonlinear input expansion . 18
3.1.2 Temporal memory . 19

3.2 Active particle reservoir computing . 20
3.2.1 State space collection matrix . 20
3.2.2 Noisy reservoir . 21
3.2.3 Coupling through multiplexing . 21

3.3 Code description . 24
3.3.1 Reservoir simulation . 25
3.3.2 Building the state space matrix . 25
3.3.3 Regression . 26
3.3.4 Testing and prediction . 26

4 Results and comparative analysis 28
4.1 Contrasting noisy & noiseless reservoirs . 29

4.1.1 Results from a noiseless reservoir 29
4.1.2 Results from a noisy reservoir . 30

4.2 Noise to performance relation . 33
4.3 Predictive performance analysis of the system with different signals 35
4.4 Influential parameters for noise mitigation 35

4.4.1 Effect of time multiplexing on performance with a noisy reservoir . 35
4.4.2 Effects of scaling input on noise . 36

4.5 Interpretable machine learning . 37
4.6 Conclusion . 38

A Appendix V

II

Effect of Noise in Active Particle Reservoir Computing

1 Introduction

This project attempts to study and simulate a noisy reservoir, for the purpose of time-
series predictions in Reservoir-Computing. Reservoir computing is a simple form of Re-
current Neural Network, which can produce good-quality time series prediction. This
simplicity of the Reservoir-Computing networks allows great flexibility in probing and
understanding the inner working of a Neural network and its ability to make successful
predictions. The reservoir is constructed from a dynamical system of active particles,
which follow a time-delay-induced oscillation around a fixed particle. The reservoir sim-
ulation is based on a physical active particle system and as such the simulation follows
constraints imposed by it. One of these major constraints is the effect of Brownian-Noise
on the active particle oscillations. Effects of which are significant on the ability of the
network in producing good time-series predictions.

The chapter on Theoretical Background introduces the theory and formulations of the
time-delayed active particle oscillations, Brownian noise and its effect on the time-delayed
oscillations, and the regular Echo state networks akin to Reservoir-Computing.

The chapter on Experimental analogous computational methods is a computational sub-
stitution to the customary experimental methods chapter since computational techniques
and simulations form the bulk of this thesis. This chapter builds on the theoretical formu-
lations introduced earlier to describe the computational methods forged in this project.
The chapter introduces the working of the reservoir, reservoir activation state collection
matrix, Noisy reservoir & its activation states, and finally the functional description of
the important code in the project.

The final chapter on Results and comparative analysis, shows and interprets the obtained
results and summarises a conclusion. This chapter tries to compare and contrast various
time series signals with a noisy and noiseless reservoir. Additionally, the Mackey-Glass
time series signal is extensively used to further probe the noisy reservoir through the
network predictions.

1

Effect of Noise in Active Particle Reservoir Computing

2 Theoretical background

2.1 Time-delayed Oscillations of Active particles

2.1.1 Active particle oscillations

The basis of this project, the reservoir, is built on the dynamics of the active particle os-
cillations. This section explores the physics and dynamics of this system. Active particles
are defined as particles that consume energy to propel persistently or to exert mechanical
forces. [Kokot et al. (2022)]. The particular system of interest here is that of an active-
particle oscillating around a fixed particle, as can be seen in Figure 1.

In this system, the oscillating active particle has a peculiar property of delayed infor-
mation reception from the fixed source particle which causes a delayed change in the
trajectory of the attracted active particle. This delayed attraction from the fixed particle
causes an angular displacement, resulting in a rotation of the active particle. The rota-
tional trajectory again experiences a delayed attraction, and so the cycle keeps inducing
a continuous oscillation. Hence the name ’Time delayed active particle oscillation’.

Figure 1: Active particle displacement due to time-delayed attraction

The equation for the system can be derived as follows. The variable θ is the angle of
propulsion and can be written as follows [Wang et al. (2022)],

θ =

∫ t

t−δt′
ω (t′) dt

Where angular velocity ω = v0
ρ
· sin (θ), additionally the stable angular velocity is written

as ω0 = v0
ρ0
, v0 and ρ0 are the initial velocity and radius. The equation for the system

is further expanded with the time-dependent angle ϕ as later described in Equation 3,
where t is the time variable. dϕ(t) is the time-dependent short angle of rotation resultant
of ’dω’ at every discrete time interval update of ’dt’ such that,

dϕ = dt · ω (t)

This can be further expanded with the relation for angular velocity as,

2

Effect of Noise in Active Particle Reservoir Computing

dϕ = dt · ω(t) · sin (θ (t)) (1)

Here θ(t) is simply the angle formed due to the time delay at a time ’t’, as can be seen in
Figure 1. Time-delayed angle θ is described more concisely with the Equation 2 [Wang
et al. (2022)], as simply the difference between the current angle at ’t’ and the past angle
at a delayed time ’t - δt’.

θ (t) = ϕ (t)− ϕ (t− δ t) (2)

With the obtained system of equations, it is apparent that the angular evolution of ϕ in
time is dependent on its own values from the past, and hence the dynamics of the system
could be written in terms of a Non-linear Delay Differential Equation (DDEs) [Terpstra
(2016)] as below,

ϕ ′ (t) = ω (t) · sin [ϕ (t)− ϕ (t− δ t)]

The angular evolution, however, needs to be derived in terms of discrete time updates for
the purposes of simulation and for its further use in reservoir computing. This is done in
Equation 3 using Equation 1 from above.

ϕ (t+ dt) = ϕ (t) + dt · v0
ρ (t)

· sin (θ (t)) (3)

The variable ρ, introduced in Equation 3 is a time-dependent radius or the distance be-
tween the centre of the fixed and active particle. This radial dependence of time makes
the angular velocity a function of time ω (t) = v

ρ(t)
where v is the initial velocity.

The equation for the radius ρ has to be derived from the symmetries in the above oscil-
lation model. Since the radius is a perpendicular component relative to the rotational
tangent velocity, the radius update is written as

dρ = −dt · v · cos (θ)

Hence the final discrete time update equation for radius ρ can be written as in Equation
4 below.

ρ (t+ dt) = ρ (t)− dt · v · cos (θ) (4)

The equations derived to model the time-delayed active particle oscillations are numer-
ically simulated using the discrete-time update Equations 2, 3 and 4 in order to gain a
better understanding of the nonlinear dynamics involved.

The following Figure 2 is a plot of the evolution of Equations 2, 3, and 4 in time, given
a tiny perturbation ϕto the system. Figure 2 shows some insights into the previously
described equations. In particular, the evolution of θ and ρ show a decay in form since
the simulation only has a perturbation at the beginning of the total simulation time. The
evolution of ϕ is rather different from the others. The function keeps accumulating over
time as is also evident from Equation 3, with a tiny fluctuation at the beginning caused
due to the induced perturbation.

3

Effect of Noise in Active Particle Reservoir Computing

Figure 2: Response of θ, ϕ & ρ to a small perturbation

One of the important interactions for Reservoir computing is the interaction of time series
signal input with the physical time-delayed active particle oscillation system. Due to the
cyclical dependence of Equations 2, 3 and 4, a time series input can be induced in the
dynamics with a simple modification to Equation 3.

ϕ (t+ dt) = ϕ (t) + dt · ω (t) · sin (θ (t) + µ (t)) (5)

Equation 5 shows the induction of time series input µ(t) into active particle oscillation,
through modification in Equation 3. The active particle system receives input through a
laser external to the system, which can be mathematically interpreted as an angular ad-
dition to the time-delayed oscillator angle θ. This is more clearly demonstrated in Figure
3. The µ(n) is an input induced to θ a time-delayed part of the ongoing time-delayed
oscillation, hence the modification from the sin(θ) to sin(θ + µ). This µ(n) then makes
changes and evolves through the system of equations described earlier in this section.

Figure 3: Adding Input µ(n) to a Time-delayed attraction

Plots in Figure 4 are the time evolving of variable θ, ϕ and ρ to a time series sinusoidal in-
put of A∗(sin(t)+2cos(3t))/2. These time evolution plots represent the system’s response

4

Effect of Noise in Active Particle Reservoir Computing

Figure 4: Response of θ, ϕ and ρ to a time series input, using equation 5

to the mentioned input. Unlike the responses seen earlier in Figure 2, the responses in
Figure 4 are a consequence of the system receiving a time series input through the time
rather than just a perturbation at the beginning of the simulation.

The responses of θ and ρ in Figure 4, have a response where the initial response around
the 10-20 seconds mark shows a transient system response to the induced perturbation,
which then transitions into a more input-driven steady-state response.

Figure 5: Example of an active particle trajectory with a sinusoidal input

Figure 5 is a graphical representation of the spatial movement of the oscillating active
particle to induced input. This is simply done by transforming the Equations 2, 3 and
4 written in the polar form to a Cartesian form to obtain the plot in Figure 5. The
plot shows a visually pleasing trajectory of the oscillating particle around the source.
Additionally, if observed closely there is an abrupt circular formation in the centre caused
due to the limits of closeness between the radius of the source and active particle during
collisions.

5

Effect of Noise in Active Particle Reservoir Computing

2.2 Brownian motion-induced noise

2.2.1 Brownian Motion

A real-valued stochastic process (Bt)t≥0 defined on a probability space (Ω, F, P), indexed
by a set T ∈ [0, ∞], is a standard Brownian motion or a Wiener process if it satisfies the
following:
1. B0 = 0, or Bx

0 = x for Brownian motion on x
2. For any n ∈ N, 0 ≤ t0 < t1 < ... < tn , the increments are Bt1 −Bt0 , Bt2 −Bt1 , ..., Btn −
Btn−1 are independent.
3. For any s, t ≥ 0 the random variable Bs+t−Bs is distributed normally with parameters
0 and t which means that

P (Bs+t −Bs ∈ A) =
1√

2 · π · t

∫
A

e

(
− |x|2

2· t

)
dx

where A is a σ − algebra of Borel sets of R, A ∈ B (R).
(Increments are Guassian)
4. all sample paths t → Bt (ω) are continuous. (But not differentiable anywhere)
The Brownian motion as a phenomenon was discovered by the biologist Robert Brown in
1827 while studying pollen particles floating in the water on a microscope. He observed
the minute pollen particles making a jittery motion, based on which he concluded that
the pollen might be alive. This was not the case, as Albert Einstein would later show
in 1905 through probabilistic modeling. Einstein observed that at relatively higher tem-
peratures/kinetic energy, the water molecules moved at random, and therefore a particle
suspended in this fluid would be impacted by a random number of collisions of random
strength from arbitrary directions at any observed short period of time. It was this ran-
dom molecular bombardment on the particles that caused the confusion as observed by
Robert Brown. The first rigorous proof of the true existence of the Brownian motion on
some probability space was given by Norbert Wiener in 1923, before the establishment of
the foundations of modern probability by Andrey Kolmogorov in 1933. Hence, the Brow-
nian motion is also often referred to as the Wiener process[The Editors of Encyclopedia
Britannica (2022) [Szabados (2010).

Diffusion constant ’D’ a macroscopic variable, and its relation to the atomic properties
of the matter obtained by Albert Einstein, around the regime of 1 micron, can be written
as [Einstein and Cowper (n.d.):

D = µ · kB · T =
R · T

NA · 6 · π · η · a
=

kB · T
6 · π · η · a

(6)

where µ is the mobility, R is the gas constant, NA = 6.06· 1023
mol

is Avogadro’s number, T is
the temperature, η is the viscosity of the liquid, a is the radius of the Brownian particle
and kB = R

NA
is the Boltzmann constant. This equation follows the idea of the Fluctuation-

dissipation theorem from statistical mechanics, which here expresses that thermodynamic
or kinetic energy fluctuations in a physical variable can contrariwise predict the resistance
to the fluctuations which cyclically then produce heat through drag, in a system that obeys
Ludwig Boltzmann’s principle of ’detailed balance’.

6

Effect of Noise in Active Particle Reservoir Computing

The Langevin Equation [Pavliotis (2014)] is a stochastic differential equation that
describes the evolution of a system that encompasses deterministic and probabilistic vari-
ables [Sjögren (n.d.)]. The Langevin equations of motion for the Brownian particle are as
follows:

d x (t)

dt
= v (t) (7)

d v (t)

dt
= − γ

m
· v (t) + 1

m
· ξ (t) (8)

In the Equations, 7 and 8, the variables x(t) and v(t) are the time-dependent position and
velocity of the Brownian particle. γ = 6πηa, γ is the frictional coefficient described by the
stokes law as a function of viscosity η and radius a. And finally ξ(t) is a stochastic variable
of random force that describes the noise caused by the collisions with smaller molecules
of the surrounding fluid medium. This effect of fluctuating force can be mathematically
described using the first and the second moments,

< ξ (t) >ξ= 0, & < ξ (t1) ξ (t2) >ξ= g · δ (t1 − t2) (9)

The 1st and the 2nd moment in the above equation 9 correspond to the mean and vari-
ance of the stochastic variable respectively. Since the mean is 0, using Equation 8 the
average force in the Langevin equation can be obtained as f(t) = − γ · v(t). The variance
is strangely represented using a Dirac delta function multiplied by variable ’g’ the ampli-
tude of the fluctuating force. While the amplitude gi changes at different time intervals
dti = (t1 − ti), the defined δ(ti − ti+1) does not change since the discrete interval remains
constant. This is consistent with the observed dynamics since the frequency of fluctuating
collisions is so high in a regular time interval that memory between forces at different times
will simply be lost due to the newer collisions. In summary, it can be concluded based on
the relations in Equation 9 with mean 0, a changing variance, and from the defined dy-
namical model in Equation 7 and 8, that the fluctuating force has a Gaussian distribution.

The solutions to the Langevin Equation 7 and 8 can be derived as follows,

x (t) = x0 +

∫ t

0

v (s) ds (10)

v (t) = e
− t

τB · v0 +
1

m
·
∫ t

0

e
− (t−s)

τB dW (s) (11)

Where ’W ’is a Wiener process (Brownian process) and dW (t) = ξ(t)dt; v0 and x0 are the
initial velocity v(t) and position x(t) respectively. Additionally τB = m

γ
is the Brownian

time scale for the particle velocity relaxation. Through Equations 10 and 11 position x(t)
and velocity v(t) are conclusively Gaussian processes since dW is a Gaussian process.

Using 1st and 2nd order moments of Equation 10 and 11 and further derivations, the
following relations are concluded for the mean and variance of position and velocity.

< v (t) >= v0 · e
− t

τB (12)

7

Effect of Noise in Active Particle Reservoir Computing

Equation 12 is the mean velocity with a free initial velocity variable v0, using the first
moment. The expansion for the 2nd moment of velocity yields the following,

<< v2 (t) >ξ >eq=
(
< v20 >eq −

g · τB
2 ·m2

)
· e−

2·t
τB +

g · τ B

2 · m2

where ’g’ denotes the variance of W(t). As seen earlier in Equation 9 variable ’g’ denotes
the amplitude of the fluctuating force or rather the amplitude of random noise. Deriving
the above equation for ’g’, at equilibrium << v2 (t) >ξ>eq=

kB T
m

gives the following
expression,

g =
2 · m · kB · T

τB
= 2 γ kB T (13)

This equation, similar to the diffusion constant, springs from the Fluctuation dissipation
theorem, this time expressing the balance between system-impeding force friction γ, and
the amplitude of noise strength g of the system-driving force. This balance is constrained
by thermal equilibrium for long time factors.
Using equations 12 and 13 the expression for the variance of velocity is obtained by taking
the 2nd central moment of v(t) and is written as follows,

σ2
v (t) =<<

(
v (t)− v0 · e

− t
τB

)2
>ξ>eq=

kB · T
m

·
(
1− e

− 2·t
τB

)
(14)

With the knowledge of the mean from Equation 12, the variance from Equation 14, and
the distribution from Equation 10 and 11, the conditional probability distribution function
for velocity, conditioned on the mean ’µv(t)’ from Equation 12, can be written as follows,

fv (v (t) | µv (t)) =
1√

2 π σ 2
v (t)

· exp

(
− (v − µ v)

2

2 · σ 2
v (t)

)
Similarly, the positional mean and variance relation can be derived from the 1st and 2nd
moments of x(t). Taking the 1st moment of position x(t) by substituting Equation 11
into Equation 10, the mean position can be written as in Equation 15, with the initial
position and velocity free-variables x0 and v0.

< x (t) >ξ= x0 + v0 · τB ·
(
1− e

− t
τB

)
(15)

The displacement variance of the particle, from the starting point, can be calculated using
the 2nd central moment of position x(t) with respect to the initial position x0.

< (x (t)− x0)
2 >ξ = τ 2B ·

(
1− e

− t
τB

)2
·
[
v20 −

g

2m γ

]
+

g

γ2
·
[
t− τB ·

(
1− e

− t
τB

)]
Constraining the above equation to equilibrium, the first term vanishes, and along with
it any dependence of initial position x0 and velocity v0 from calculating the variance in
further calculations. This constraint gives the following two solutions for limits of time
close to 0, and limits of time approaching infinity,

lim
x→0

<< x (t)− x0)
2 >ξ >= t2 · kB · T

m

8

Effect of Noise in Active Particle Reservoir Computing

Since the functional behavior of interest in this project is the long-term trajectory of
the Brownian particle, the expansion from here is in the limit of time approaching large
values.

lim
t→∞

<< (x (t)− x0)
2 >ξ >= t · 2 · kB · T

γ

Hence the expression for the 2nd central moment can be written more clearly using Ein-
stein’s diffusion relation as, [Pavliotis (2014)]

< (x (t)− x0)
2 >= t · 2 · kB · T

γ
= 2 ·D · t (16)

Expanding on the Equation 16 the variance for a time-dependent mean can be derived as
follows in Equation 17.

σ 2
x (t) =< (x (t)− µ x (t))

2 >=
2 · kB · T · τ 2

B

m
·

(
t

τ B

− 3

2
+ 2 · e−

t
τ B − e

− 2· t
τ B

2

)
(17)

And finally, the expression for the variance of displacement for a Brownian particle, start-
ing at a stationary point is derived as follows in Equation 18 [Sjögren (n.d.)].

σ 2
x (t) =< (x (t)− x0)

2 >= 2 ·D · t (18)

With the knowledge of the mean from Equation 15, the variance from Equation 17 or
Equation 18, and the distribution from Equation 10 and 11, the conditional probability
distribution function for the Brownian particle displacement, conditioned on the mean
’µx’ can be written as follows,

fx (x (t) | µx (t)) =
1√

2 π σ 2
x (t)

· exp
(
− x− µ x

2 · σ2
x (t)

)
. (19)

2.2.2 Brownian motion on oscillating active particle

The active particle oscillations described in Section 2.1.1 is an idealized description of the
system. In the actual physical system, these oscillations are affected by the Brownian
noise and hence the equations derived in Section 2.1.1 are updated to take into account
the noise in an effort to make a more accurate description of the active particle oscillation
model. This section reasons and derives this updated model.

From the previously described definition of Brownian motion in Section 2.1.1, discrete-
time update Equations 3 and 4 are modified. Since Equations 3 and 4 are updated
at every time increment ’dt’, it is known from Section 2.1.1 that an added Brownian
random variable here should have ”Gaussian increments,” and that these ”increments are
independent.” This is achieved by adding Gaussian noise in a polar coordinate system
since the Equations 3 and 4 are polar themselves. Additionally, since the oscillating
active particle is a 2-dimensional system, both experimentally and in the simulation, the
adapted Brownian noise in the model is also 2-dimensional. These state requirements are
formulated into the Equations 3 and 4 by the addition of a normally distributed random

9

Effect of Noise in Active Particle Reservoir Computing

variable to the two polar coordinates of radius ρ, and angle ϕ. Hence the equations for
Brownian-induced, time-delayed active particle oscillation can be written as follows with
the additional term µ(t) for the time series input.

ϕ (t+ dt) = ϕ (t) + dt ·
(
ω (t) · sin (θ (t) + µ (t)) +

N (0, σ2)

ρ (t)

)
(20)

ρ (t+ dt) = ρ (t)− dt · v · cos (θ) +N
(
0, σ2

)
(21)

Equations 20 and 21 in addition to Equation 2, describe the full set of equations for the
Brownian-induced, time-delayed active particle oscillation.

Figure 6: Response of Noisy system to a sinusoidal time series input

Figure 7: [Left] - Brownian noise in an active particle time-delayed oscillator; [Right] -
Brownian noise in an active particle time-delayed oscillator with input µ(n)

The N in the Equation 20 and 21 is the normal distribution N(µ, σ2) set to have a mean
of 0, µ = 0, and the relation for the standard deviation σ and variance σ2 is derived from

10

Effect of Noise in Active Particle Reservoir Computing

Equations 18 of Brownian motion. And hence the relation for variance is written as,

σ =
√
2 ·D · t (22)

This might seem overly simplistic since the derived equation for the distribution and
variance of a Brownian motion particle with changing mean in Equations 17 and 19 are
not this simple. This is not a problem with Equations 20 and 21, even though the mean
is rotationally moving, the equations themselves only describe the position in the next
discrete time. So one can assume the mean of 0 centering the Gaussian along the current
position in the evolution. Similarly, the variance is chosen from Equation 18.
Since the oscillator simulation runs on a discrete loop equation 23 can also be written as

dσ =
√
2 ·D · dt (23)

As the oscillator simulation runs over the simulation time, the variance in Equation 23
accumulates over time at the rate of the square root of the simulation time step dt,

√
dt.

Hence the variance keeps growing, producing an ever-long stretched Gaussian curve with
time. The parameter ’D’, the diffusivity constant from Equation 6, used for the variance
relation in Equation 23, is set to be a value of ”D=0.08” as per the diffusivity coefficient
of the real experimental setup.

Once again the equations in this section are numerically simulated with Equations 2, 20
and 21 for a better understanding of the dynamics involved. Figure 6 shows the response
of the formulated system to a sinusoidal time series input through the plots of time-
varying delayed angle θ and radius ρ. Figure 7 shows the plot of Brownian noise in an
active particle time-delayed oscillation system. The blue line represents the simulation
of oscillations without any Brownian noise and the orange line represents the oscillations
with the presence of Brownian noise. The graph on the right in Figure 7 shows the plot
of the same simulation with an added sinusoidal input to the system, following Equations
20 and 21. This visually pleasing nonlinear input response in Figure 7 is utilized as a
nonlinear expansion of a given input in the reservoir computing which is discussed later.

2.3 Reservoir computing

2.3.1 Recurrent neural networks, a brief discussion

Machine learning came about with attempts to mathematically model the workings
of neurons and neural networks in a larger effort to understand the brain. In 1943, Wal-
ter Pitts and Warren McCulloh published a paper titled ”A logical calculus of the ideas
immanent in nervous activity” [McCulloch and Pitts (1943)], marking the first attempts
of a logical/mathematical model of neural networks and human cognition at large. In
1950, Alan Turing proposed the famous ”Turing test”. In 1952 Arthur Lee Samuel writes
a program for the game of checkers which improved after every game, coining the term
”Machine Learning”. Kick-starting the ubiquitous presence and study of the field of Ma-
chine Learning [Molnar et al. (2020)].

11

Effect of Noise in Active Particle Reservoir Computing

The idea of Recurrent Neural Networks (RNNs) came about in 1986 with the pub-
lication of the paper ”Learning representations by back-propagating errors” by David
Rumelhart, Geoffrey Everest Hinton, and Ronald J. Williams, and is today one of the
major pillars of Machine Learning. In the most basic terms, RNNs map some defined
state space ”s” to an action ”a” with an emphasis on the usage of reward functions un-
like the sister method of supervised learning, which uses human supervision for training.
The Networks automatically adapt a mapping from the state spaces to actions using the
reward functions [Sherstinsky (2018)].

[s (t) , a (s, t) , R (s, a) , s′ (R)]

Above is a generic description where for every time step ”t” there is a state space ”s(t)”
which leads to an action ”a,” the state and the action in turn produce a value in the
reward function which then leads to a new state space ”s′(R).” Additionally, a ”return
function” can be defined as the sum of the reward function weighted by a discount factor
γ, and can be written as

return : ρ = R (t = 1) + γ ·R (t = 2) + γ2 ·R (t = 3) ... (until a terminal s (t))

In this example, if γ < 1, the return function plays with the reward function to make
the network mapping between the state space and action more time impatient as the
reward decreases significantly with every time step. Hence the network is geared towards
the rewards as fast as possible, often described as ”added time impatience.” This can be
modified to make the network induce a spacial impatience or an interest rate function
and so forth based on the task. Altogether, the goal in reinforcement learning is to find
a policy function Π such that for every state ”s” mapped to an action ”a,” Π (s) = a
maximizes the value of the return function |ρ| [Terpstra (2016)].

One of the distinguishing features of RNNs is the presence of cyclical connection topology
in the trained networks. This cyclical nature of RNNs allows the system to develop ac-
tivations even with a null input signal. When given a real input signal, the system saves
a nonlinear transformation of the input into the network memory or the internal state.
This process description classifies the RNNs to be a mathematically dynamical system,
in contrast to the function-like behavior of feed-forward networks. This way of describing
RNNs gives some clues regarding the effectiveness of RNNs in sequential learning prob-
lems or time-series predictions [Terpstra (2016)].

2.3.2 Echo state networks and time series prediction

Around 2001, two new independently published works introduced a foundationally new
approach to the Recurrent Neural Network paradigm, ”Liquid State Machines” by Wolf-
gang Maass and ”Echo State Networks” by Herbert Jaeger, which then collectively came
to be referred to as Reservoir Computing (RC) [Lukoševičius (2012)]. In a simplistic
description, while working with RNNs, the last layers were observed to be the most im-
portant and it was also observed that RNNs often seemed to perform well even with just
the final network weights. This led to an attempt to bypass training with multiple layers

12

Effect of Noise in Active Particle Reservoir Computing

and instead have a fixed randomly generated reservoir and train only this readout. This
paradigm was eventually realized into the field of ’Reservoir Computing’. Eventually, it
became fairly common to produce and train the reservoir separately, unlike the original
conception, which is the case in this project as well[Lukoševičius and Jaeger (2009a)].

Within the vast plethora of RNN models, this writing is concerned with dynamical sys-
tems. In particular, nonlinear dynamical systems. The RC paradigm particularly belongs
to the class of RNNs with a deterministic update, directed connections, supervised train-
ing, and a nonlinear filter implementation which can transform an input time series signal
into an output time series signal. Though the RC paradigm belongs within the categoriza-
tion of RNN it overcame a major shortcoming of the regular RNNs by avoiding, training
on, multiple giant network layers altogether. This discovery, which was made before the
advent of Graphical processing units (GPUs) and much faster parallel processing meth-
ods for matrix computations, was a giant performance leap for the available hardware
in the early 21st century. Nevertheless, it has become apparent in the present day that
large RNNs are still largely useful, and are commonly run on various powerful parallel
processing modern hardware.

The RC paradigm tries to optimize on the RNN training in the following ways. A random
recurrent neural network is generated and remains unchanged through the training phase.
This particular RNN is the so-called “Reservoir”. This reservoir is excited with the input
during its creation and maintains in it a form of nonlinear transformation of the input
history. The output signal or rather, the prediction, is obtained through training the
input excited reservoir with the input itself as the aim using linear regression. One could
also train the network to map any 2 kinds of data. The trained weights out of this pro-
cess are then used to make the predictions further into the signal. The following sections
elaborate more thoroughly on the workings of the RC paradigm for temporal tasks.

2.3.3 Activation State/Kernel : x(n)

The mapping between the input data µ(n), where ’n’ is the time step, and the desired
output data y(n) for generating predictions, involves multiple processes. The first and
the most important of which is the making of a state x(n) onto a collection of state space
χ. The predictive mapping between the input µ(n) and the output y(n) = µ(n + 1),
in most cases, cannot simply be linear throughout the data. This most certainly is not
the case for nonlinear signals by definition, which are studied in this project and will
be discussed in later sections. Hence, the ESN networks perform a nonlinear expansion
of the input onto some high-dimensional feature space which can then be reduced to a
simple linear formation on this space based on the choice of nonlinearity. This nonlinear
high dimensional projection is performed through the state x(n) or x(µ(n)). This simple
linear formation in the high-dimensional space can then be used to train Wout through
linear regression, which is then used to make prediction outputs y(n) = Wout · x(µ(n)).
This method is often referred to as the ”Kernel trick” where x(n) acts as the kernel. This
is elaborated more in Section 3.1.1 [Lukoševičius and Jaeger (2009a)].

13

Effect of Noise in Active Particle Reservoir Computing

The state x(n) is a vector expansion of a single input µ(n), and serves as a nonlinear
input expansion. Additionally, it also serves as a temporal memory, since the input of
interest is a temporal signal i.e. every signal position in the present is dependent on the
past positions. Hence the state can also be represented as a function of the past input
points as x(n) = x(µ(n), µ(n− 1), µ(n− 2)...) or simply x(n) = x(µ(n), x(n− 1)) but this
is usually clear from the Equations 24, 25 and 26 which will be discussed later.

This inter-state temporal relation is made more obvious by plotting one state against
another state. This produces an ’attractor’ chasing itself, which is seen in continuous
temporal signals, solidifying the existence of some temporal memory in the states x(n)
belonging to the state collection matrix χ [Doyne Farmer (1982)]. Figure 8 shows this
for Sine signal as the input using the simple ESN code formulated from Equations 24, 25
and 26 discussed later.

Figure 8: Dynamic Attractors for state [left] x(32) vs x(31), and [right] x(32) vs x(307)

Formulating the basic model for ESN

The update equation for the Echo-state-network can be written as follows,

x′ (n) = tanh (Win · [1; µ (n)]) +W · x (n− 1) (24)

x (n) = (1− α) · x (n− 1) + α · x′ (n) (25)

Where the ’n’ is the time step, α is the leaking rate, and x′ is the update [Lukoševičius
(2012)]. Importantly Win is the input scaling matrix that projects every input to the
dimensions of the reservoir with additional accommodation for a bias term, W is the
reservoir matrix or the input coupling matrix. The reservoir matrix is essentially a random
matrix that couples the current state x(n) with the past state x(n− 1). This can be seen
as such in the Equations 24 and 25, and since these are discrete-time continuous the
state x(n− 1) will further be related to x(n− 2). Hence the reservoir matrix introduces
a coupling between the states, and as such can be tweaked with various parameters to

14

Effect of Noise in Active Particle Reservoir Computing

Figure 9: Visual summary of an ESN

affect different kinds of coupling between the current and past states, such as the spectral
radius or the sparsity of the matrix.
One of the important parameters in Equation 25 is the leaking rate α ∈ (0, 1]. The leaking
rate, sometimes also called the decaying rate, determines the speed of the reservoir update
dynamics. Additionally, the leaking rate is restricted α ∈ (0, 1], such that the state x(n)
does not retain or leak more activation than that caused by the input µ(n).

2.3.4 Readouts out of the reservoirs

Linear regression is the most commonly used readout method in reservoir computing.
Since the method is born out of the methods of solving the least squares in linear algebra,
the process can be described analytically. This is in contrast to the usual numerical
descriptions of readout methods such as the well-known gradient descent. This also speaks
to the similarity of the RC methods to that of the Kernel methods, since the final steps
for a nonlinear signal prediction utilize the linear regression method.

Ridge regression, also known as the Tikhonov regularization [Lenzen and Scherzer
(2004)], is a subset of linear regression with an additional regularization coefficient term.
The method is commonly used when system parameters are highly correlated. This
method is helpful in tilting an overfit curve with limited training data to better fit the
full data, including the test set.
Figure 10 illustrates the visual difference in linear versus ridge regression. Unlike the
linear curve fit, the reg regression fit produces a slightly tilted line as a consequence of
the reg coefficient, and as can be seen in the Figure 10, this fits better with the entirety
of the data set than the linear fit which is limited to the training data in its accuracy.

15

Effect of Noise in Active Particle Reservoir Computing

Figure 10: Visual difference between Liner and Reg coefficient

This can be further formalized with the equation for the ridge estimator as,

βr =
(
X T ·X + λ · I

)−1 ·XT · y

which is obtained through the constrained optimization of

minβ

{
(y −X · β)T (y −X · β) + λ

(
βT · β − c

)}
Where λ is the ridge coefficient or rather the Lagrange multiplier in minimization for-
mulation, y is the statistical regressand, X is the statistical model matrix, and I is the
identity matrix. The reg coefficient is generally calculated as the squared summation of
the system parameter sparing the intercept value. The coefficient can also simply be used
as a control parameter that can be chosen based on the specific problem to solve.

The linear readout layer is the last algorithmic step toward obtaining the final output
from the network. This can be formulated as the product of the optimal weight vector
obtained through reg regression Wout, with the state vector x(n) which gives a single point
output written as,

y(n) = Wout · x(n) (26)

where the variable ’n’ in Equation 26 sequentially enters and is bounded within the ’train-
ing time’ regime. Furthermore, the vector Wout can be elaborated through the Tikhonov
regularization discussed earlier as shown in Equation 27 and 28.

Wout ·X = Ytarget (27)

Wout = Y target ·XT
(
X ·XT + β · I

)−1
(28)

Here the variable Ytarget is a vector constructed through the collection of single output
value y(n) in the training. The generation of the reservoir-state matrix and the Wout

are done separately in contrast to the traditional RC computing method that does not
discriminate much between the two generations. Since the reservoir state collection ma-
trix and the Wout perform different functions, nonlinear expansion vs linear fitting, it
has become common to separate the two generation procedures. The latter algorithmic
procedure of readout can then be further classified into predictive and generative readouts.

16

Effect of Noise in Active Particle Reservoir Computing

Predictive mode is a readout method in which the network only predicts 1 step ahead
of the given time series signal. When run for the entire testing length of the data, this
effectively allows the system to course-correct any error in the previous prediction since
the next step prediction is made based on the original data at the current time step.
This keeps the prediction from accumulating error over training lengths. Since unlike
most RNN methods the computation to be performed for the next-step prediction is
significantly cheap, this allows the system to make next-step predictions fairly fast after
waiting for the current time data, making this method useful for applications by building
some quick functions response on the prediction.

Generative mode is a readout method in which the network takes its own prediction
from the past time step to make a prediction for the next time step. This makes an
accurate signal prediction over time much harder since the error accumulates over time.
However, generative predictions are a more accurate representation of the learned signal
within the network. When successfully implemented, implementing this method correctly
can lead to a powerful prediction tool.

17

Effect of Noise in Active Particle Reservoir Computing

3 Experimental analogous computational methods

3.1 The reservoir

The reservoir matrix is simply a coupling matrix, as introduced in the ESN Equations
24 and 25. However, the reservoir itself plays a more important role in this project in
providing neuron activations in time. The reservoir performs a nonlinear expansion of
the input in addition to coupling past input activation states to the current state.
These nonlinear expansions and memory functions of the reservoir are naturally fulfilled
in a nonlinear dynamical system, making it an ideal reservoir, and the choice of this
nonlinear dynamical system in this project is the ’time delayed active particle oscillation
system’. This section delves deeper into these aspects.

3.1.1 Nonlinear input expansion

A reservoir can be seen as an operation that expands a given input µ(n) into a higher
dimensional space using a nonlinear function to produce the points in new dimensions.
This input expansion is similar to the known ’Kernel methods’ which use the kernel trick,
explained in this section below [Approximation of dynamical systems by continuous time
recurrent neural networks (1993)]. However, the reservoir computing method allows for
the holding of past temporal memory of the state x(n) = x(µ(n), µ(n−1)... µ(1)) making
it a recurrent state network, elaborated in Section 3.1.2.

The kernel trick is a common method, often used in support vector machines, where
input data ’µi’ is projected into a higher dimensional space with a nonlinear function
Φ(µi) = [ϕ1(µi) ϕ2(µi) ... ϕn(µi)], where the kernel is simply

K (a, b) =
∑
i=I

λi · ϕi (a) · ϕi (b) = Φ (a) · Φ (b)T

and the output can be simply read of as y = wT · ϕ (µi), where ’w’ is the trained weight
through linear regression [Shalizi (2020)]. A nonlinear input data then becomes linearly
separable in this higher dimensional space. The choice of the nonlinear expansion can be
made using the domain knowledge of the data, and the choice of this nonlinear function
has to satisfy Mercer’s condition from Mercer’s theorem. However, since the dimensional
expansion is through a nonlinear function this can be done to make an infinite dimensional
matrix. Since this clearly is computationally impractical, the size of the dimension has
to be made as a parameter choice. A parameter for the number of dimensions at which
the projection of the given nonlinear input signal is linearly separable. Equations 20, 21,
and 2 act as kernel expansions in this project, and Wout from Equation 27 can be seen as
a vector with higher dimensional curve fitting parameters in its components.

Figure 4 from the theoretical section shows an initial transient and the later driven steady-
state response of the oscillator angle θ. It is this input-driven steady-state response that
is used as the nonlinear expansion of input, while the transient response is removed from
the network.

18

Effect of Noise in Active Particle Reservoir Computing

Figure 11: Visualizing linearly separable feature map of a Gaussian [iii], Visualizing clas-
sification feature map[ii] & the resulting boundary line on data [i]

The graphics on the left [i] and [ii] in Figure 11 are the visualization of the well-known
Polynomial kernel in a classification task. The graphic on the right [iii] in Figure 11 is
a visualization of a potential linearly separable manifold in the feature space of a simple
Gaussian curve.

3.1.2 Temporal memory

What makes the RC method distinct from a kernel method, is the ability to hold tem-
poral memory of the past activation states and couple them to the current state. These
temporal dynamics make the Reservoir Computing method a Recurrent Neural Network.
Coupling between states x(n) mainly exists through two processes: first through the
natural dynamical property of the time-delayed active particle oscillations, and second,
through the method of multiplexing explained in Section 3.2.3 [Tanaka et al. (2019)].

Time delayed oscillations from dynamics presented in the theoretical Chapter 2,
especially in Equations 2 which then embedded into Equations 20, 21, show that there is
a time delayed coupling variable dependency from ϕ(t) and ϕ(t − δt) translating further
through the equations describing the dynamics. The discrete-time interval of delayed
coupling is simply Delay step size = Z

{
δ t
dt

}
. This coupling through delayed feedback

forms a natural recursive coupling in the states x(n) through the dynamical evolution
[Lukoševičius (2012)].

x (n) = x

(
µ (n) , x (n− 1) , x

(
n− Z

{
δ t

dt

}))
Hence the dynamical system of tTime-delayed active particle oscillations forms a great
reservoir in this project through its natural dynamic evolution. Additionally, since the
reservoir has a mathematical description, it makes for an Interpretable machine learning
method which is later explained in Section 4.5.

19

Effect of Noise in Active Particle Reservoir Computing

3.2 Active particle reservoir computing

This section delves into the construction of reservoir computing using the time-delayed
active particle oscillation system, introduced in the theoretical foundations of Chapter 2.
In a nutshell, this is done through the simulation of Equations 20, 21 and 2 as neuron
activation functions for the input, and then through prediction plus readouts as described
in Section 2.3.4. However, in comparison to a vanilla Echo State Networks, discussed in
Section 2.3.2, there are major differences here through the choice of the reservoir discussed
earlier. These important details are discussed in the section below.

3.2.1 State space collection matrix

One of the most important aspects during training is the construction of the state space
matrix. The reservoir neuron activations are collected in a vector for each single discrete
time step, the collection of which, through the training time, gives the state space matrix.
This state space matrix, in the general ’Batch mode’, forms a fixed state space matrix
used unchanged through the prediction process. This can, nevertheless, also be tailored
as is done in the ’Online mode’, where the reservoir is updated during the prediction.

In this project, the time-delayed active particle is simulated as described in Chapter 2, i.e
the project uses a simulated reservoir. However, this simulation is a computational reflec-
tion of a real physical time-delayed active particle oscillation system, a physical reservoir,
that was experimentally set up in the lab. Please note that the details of this experiment
are not dealt with in this thesis.

Each state vector is constructed out of the input response from the reservoir system.
There are ’training-length’ numbers of state vectors i.e single training data point is used
to produce one state vector. From the simulation of the system described in Chapter
2 there are 3 simulation variables that can be used as the reservoir activation state in
the network, radius ρ(t), angle ϕ(t), and angle θ(t). This project uses angle θ(t) as the
reservoir activation state akin to the ESN state x(n) introduced in Equations 24 and
25. Hence the update equation of the network for activation state can be written using
Equations 2, 4 and 5, as:

Θx(n) := θ (n) = ϕ (n)− ϕ (n−∆ t)

ϕ (n+ 1) = ϕ (n) + dt · ω (n) · sin
(
θ (n) +Win ·

(
1

µ (n)

))

ρ (n+ 1) = ρ (n)− dt · v · cos (θ)

(29)

Equations 29 are the complete set of equations for the description of the activation
state Θx(n), where n is the discrete simulation time step of update resolution dt =
1, the subscript ’x’ refers to the place order of Θ in the state space matrix where
x ∈ [1, T raining length], Win input scaling matrix as described in Section 2.3.3, and
∆ t = Z

{
δ t
dt

}
is the discretized time delay. Again, a complete single-line description of

20

Effect of Noise in Active Particle Reservoir Computing

the kernel expansion through activation state Θ, can be written using Equations 2, 4 and
5 as

θ (n+ 1) = θ (n) +
v0

ρ (n)
· dt ·

[
sin

(
θ (n) +Win ·

(
1

µ (n)

))

− sin

(
θ (n−∆t) +Win ·

(
1

µ (n−∆t)

))]
(30)

The activation function is generally a nonlinearity introduced in a network that can
help with the kernel projection as explained in Section 3.1.1. The choice of nonlinearity
in the activation state is the sinusoidal function ’Sine’, which transforms the input µ(n).
Hence the activation function in this reservoir computing network is the Sine function.

3.2.2 Noisy reservoir

The equations in 29 are an idealized simulation of the physical time-delayed active particle
system. In the physical experimental setup, the oscillating particle experiences Brownian
noise, the model of which is explained in Section 2.2. Hence the physical reservoir is
intrinsically a noisy system. Similar to Equation 29, the set of equations describing a
noisy reservoir can be formulated using Equations 20, 21 and 2 as

Θx(n) := θ (n) = ϕ (n)− ϕ (n−∆ t)

ϕ (n+ 1) = ϕ (n) + dt ·

[
ω (n) · sin

(
θ (n) +Win ·

(
1

µ (n)

))
+

N (0, dσ)

ρ (n)

]

ρ (n+ 1) = ρ (n)− dt · v · cos (θ) +N (0, dσ)

(31)

where the variance for the normal distribution function, added recursively for every time
step, is dσ =

√
2 ·D · t from Equation 23. Equations 31 are the complete set of equations

for the description of the activation state Θx(n), from a Noisy-Reservoir. The prediction
comparisons with the ideal reservoir and analysis of noise on prediction performance are
discussed in the later chapter.

3.2.3 Coupling through multiplexing

In addition to the natural time-delayed input-state coupling through the natural dynamics
in the reservoir, this project uses an additional method of activation state coupling through
the method of input multiplexing [Bianchi, F., Livi, L., Alippi, C. (2017)]. This section
discusses the two multiplexing methods used in this project, simple input multiplexing,
and time multiplexing [Röhm and Lüdge (2018)].

21

Effect of Noise in Active Particle Reservoir Computing

Simple input multiplexing is a method by which multiple input values are extracted
from a single input out of the input signal. This is done by simply multiplying the single
input with the random numbers of desired multiplexing quantity. This is effectively a
multiplicative increase in the size of the input. For example, an input signal of size 2,
with a multiplex of 3 would be an effective input of size 6. This is demonstrated in Figure
12, where u[1] and u[2] are the real input from the signal, and m[1],m[2]..,m[6] are the
multiplexed input.

Figure 12: Simple multiplexing

This method of increasing the input in a multiplicative manner is similar to the Win input
scaling matrix. The code implementation of multiplexing in this project is done through
functional modifications of the Win matrix. Additionally, such input size scaling is very
useful in training a larger state space matrix in a short duration, since the laser-trapped
particles tend to escape control in a relatively short time, in the experimental setup of
the physical reservoir.

Figure 13: Time multiplex using Mout ≥ Min

Time multiplexing through [Mout ≥ Min] is a method by which past state evolution
memory that was multiplexed can be stacked into the current state. This is an artificial

22

Effect of Noise in Active Particle Reservoir Computing

method of affecting the temporal memory of the network. Mout and Min are the Multi-
plex out and Multiplex in variables respectively. Where Min performs the simple input
multiplexing, and when Mout = Min is equivalent to the simple multiplexing with M .
During Mout > Min the input first undergoes simple multiplexing as described earlier
of the multiplicative multiplex number Min, after which the last ”Mout − Min” number
of multiplexed input activation state responses are stacked on the next state vector, as
visually demonstrated in Figure 13.

Figure 14: Visual summary of a sample state space matrix

Figure 14 is a visual representation of a sample state space matrix, where the relation
between different state vectors and their multiplex relations are highlighted with different
colors, with time multiplexing visual on the left, and the time delayed coupling relation
on the right. The red squares on the top µ(n+ t) are single input points. The row size of

23

Effect of Noise in Active Particle Reservoir Computing

the matrix is equivalent to the training length (minus the initial length) and the column
length of the matrix is the multiplexed values of the real state/neurons i.e Number of states
· (Min+(Mout−Min)) =Number of state ·Mout. Due to the implementation of the input
multiplexing, there is a distinction made between the real intended neurons/oscillators
vs the total resultant multiplexed neurons/oscillators, i.e real activation states/neurons
vs multiplexed states. The real states correspond to independent oscillators with their
own independent input responses, similar to the real physical reservoir which can have
multiple oscillating particle systems respond to the same input with different responses
based on unique initial conditions, noise, and other factors. And hence in Figure 14, there
are a total of 9 components in each state vector even though there are only 3 oscillators.

3.3 Code description

This section briefly highlights the code implementation of the mentioned theory so far.
The programming language of choice in this project was ’Julia’ and the code base of this
project tries to follow some of the styles of the functional programming paradigm. Julia
is a language written for scientific computing with great and fast methods for matrix
operations and the ability to easily prototype on large data [Bezanson et al. (2012)]. The
program implementation of this project is done with minimal usage of external libraries,
the only used libraries were for importing data, Plots, and Linear Algebra. This allowed
the code to be a more complete mathematical and functional description of the processes
and methods undertaken. Figure 15 is a general overview of the program implementation.

Each subsection of this section describes a function in the code base and is a bare-bone
functional description of the code, with the exclusion of syntax for imported libraries and
initialized variables. Additionally, the Julia environment allows for extravagant usage of
loops without the usual need for having to make the code run in parallel. With its fast
JIT compiler, and dynamic and strong typing system, it was very well suited for the heavy
computation needed in this project.

Figure 15: Functional overview of the program

24

Effect of Noise in Active Particle Reservoir Computing

3.3.1 Reservoir simulation

The following function Reservoir physics is responsible for simulating the time-delayed
active particle oscillation.

function Reservoir_physics(Oscillator_number::Int64,Input::Float64)

local dim = Oscillator_number

time = Int64(timematrix[Oscillator_number]) #local - Oscillator time

θ[dim, time] = ϕ[dim, time] - ϕ[dim, time - delay]

ϕ[dim, time] = ϕ[dim, time] + dt*((v_0*sin(θ[dim, time]+ input)/ρ[dim, time])) + rand(Normal(0.0,sqrt(2*dt*diffusivity)))/ρ[dim, time]

#markov process - diffusivity

hold = ρ[dim, time] - (v_0 *cos(θ[dim, time]+input)*dt) + rand(Normal(0.0,sqrt(2*dt*diffusivity)))

ρ[dim, time] = max(hold, ρ_0) #max radius limit

#every "+1" is a "+dt" discrete coordinate transformed

timevector[Osc_Number] = time + 1

return θ[dim, time].*(180 /pi)

end

The function is called upon every discrete time to calculate the response of an input
on a particular oscillator. Since the program allows the flexibility of having multiple
oscillators, similar to the lab setup, input response for different oscillators is calculated
using different time memory and past variable index. Variables ϕ, θ&ρ are initialized as
vectors and global time as a matrix to keep time memories of different oscillators. The
equations inside the function follow the equation 31 of a noisy reservoir setup. However,
the equations can also be modified to equation 29 for an ideal non-noisy reservoir setup.

3.3.2 Building the state space matrix

The following function State assembly calculates each state vector x and stacks them
together over training length to build the state space matrix X.

function State_assembly()

X = zeros((realNeurons*M_out)+inputSize+1, trainLen-initLen)

memory = zeros(trainLen+testLen+1,realNeurons,(M_out - M_in))

for i = 1:trainLen

#builds one state 'x' in one loop

x= []

data_collect = []

for lop = 1:(d_collect_num+1)

if lop==1

push!(data_collect,1)

else

push!(data_collect,data[i]*input_multiply)

end

end

for j = 1:realNeurons

#for each real state

for k = 1:M_in #Multiplexing

if k == 1

for idx = 1:(M_out - M_in)

push!(x,memory[(i+1)-1,j,idx])

end

end

#reservoir output

holdon = Reservoir_physics(j, collect(transpose(data_collect)*Win_again[j,k,:])[1])

push!(x, holdon)

if k == M_in

for idx = 1:(M_out-M_in)

memory[(i+1),j,idx] = x[end-(M_out-M_in)+idx-1]

end

end

end

end

#stacking the state vectors into a matrix

25

Effect of Noise in Active Particle Reservoir Computing

if i > initLen

X[:,i-initLen] = [(data_collect);x]

#X[:,i-initLen] =[1;data[1,i];data[2,i];data[3,i];x]

end

end

return X

end

The function performs the time multiplexing operation as described in section 3.2.3, after
which it calculates the evolution of each oscillator using the earlier function Reservoir
physics, as per section 3.2.2, stacking them together to form a single state x. Each of
these is again stacked through the length of training to make the state space matrix,
similar to the visual representation in Figure 14. Additionally, the function trims some
of the obtained reservoir activations states at the beginning of training with the variable;

initLen #initial length

This is simply to remove the initial transient response of the oscillator and just keep the
input-driven steady-state response which relates to the nonlinear expansion of the input.

3.3.3 Regression

The following function Reg regression calculates the weight vector Wout through reg-
regression as explained in Section 2.3.4. Since the program is written in Julia, the function
can utilize Julia’s backslash solver.

function Reg_regression()

X = State_assembly() #state matrix

Yt = transpose(data[initLen+2:trainLen+1]) #traing data

reg = 1.1e-8 # regularization factor

#Reg-regression using Julia's \ solver

Wout = transpose((X*transpose(X) + reg*I) \ (X*transpose(Yt)))

return Wout

end

The back slash solver uses the QR factorization method and is a numerically stable and
reliable method for the speed relative to other available methods. The solver simply com-

putes Wout =
(
X XT

)−1
XT Yt to minimize the least square error minx ||X Wout − Yt| |2.

3.3.4 Testing and prediction

The function, Time series prediction below finally uses the built state space matrix and
trained weights Wout to run predictions as explained in Section 2.3.4, using the equation
26.

function Timeseries_prediction()

Wout = Reg_regression()

global u = data[trainLen+1]

Y_out = Float64[]

for t = 1:testLen #test time

x = []

data_collect = []

for lop = 1:(d_collect_num+1)

if lop==1

push!(data_collect,1)

else

push!(data_collect, u*input_multiply)

26

Effect of Noise in Active Particle Reservoir Computing

end

end

#calculating activation states for test-data

#similar to activation state code in State_assembly()

for j = 1:realNeurons

for k = 1:M_in

if k == 1

for idx = 1:(M_out - M_in)

push!(x,memory[(trainLen+1+t)-1,j,idx])

end

end

holdon = Reservoir_physics(j, collect(transpose(data_collect)*Win_again[j,k,:])[1])

push!(x, holdon)

if k == M_in

for idx = 1:(M_out-M_in)

memory[trainLen+1+t,j,idx] = x[end-(M_out-M_in)+idx-1]

end

end

end

end

#final prediction calculation

y = Wout*[(data_collect);x]

Y_out[t] = y

global u = y #generative mode

#global u = data[trainLen+1+t] #Predictive mode

end

return Y_out

end

Additionally, an important detail is the ability to switch between the ’Generative’ and
the ’Predictive’ modes. The following code snippet runs the Prediction() function in the
generative mode.

global u = y #generative mode

This is achieved by simply feeding the network’s own prediction yout(n) into the activation
state calculation x(n+ 1) in the reservoir and using yout(n+ 1) = Wout · x(n+ 1). Hence,
making it a time series generative network. This also makes any prediction deviation
or error accumulate over prediction time and is a much harder method to get right, as
explained in Section 2.3.4. And finally, the code snippet below runs the network in a
predictive mode.

global u = data[trainLen+1+t] #Predictive mode

This is simply done by feeding the current step data into the activation state calcula-
tion, x(n + 1), which then translates into further prediction calculation. This method is
relatively easier to get the right results since any error in prediction has no cumulative
accumulation.

27

Effect of Noise in Active Particle Reservoir Computing

4 Results and comparative analysis

The time series prediction results analyzed in this chapter were generated using the
generative mode of the network, as explained in Section 3.3.4 and 2.3.4. Additionally,
Mackey–Glass chaotic time series signal is used as the signal of choice for most compara-
tive studies. This part of the chapter briefly discusses the Mackey–Glass signal, the root
mean square error, and the results from the ’Predictive mode’ of the network.

TheMackey-Glass signal is a chaotic time series signal, obtained from the Mackey–Glass
delayed-differential equation, written as follows:

dy

dt
= β · y (t) + α · y (t− τ)

1 + x (t− τ)

Where ’t’ is time, ’τ ’ is the time delay, and ’y’ is a unit-less amplitude [Mackey and Glass
(1977)]. The time series has chaotic behavior when the time step delay is at least 17 steps,
τ ≥ 17. The chaotic nature of the time series signal with its dependence on the past states
makes it an interesting signal to analyze the effects of noise in reservoir computing.

Root-Mean-Square-Error (RMSE) [Wang and Lu (2018)] is the square root of the
Means squared error. RMSE is a common method of analyzing errors in time series
prediction and is extensively used in this chapter.

RMSE =

√∑N
n=1

(
Y True
i − Y Predicted

i

)
N

(32)

Predictive mode , as described in Section 3.3.4 and 2.3.4, is used to make time-series
predictions of the Lorentz signals.

Figure 16: 3,000 step prediction of the 1st and 2nd dimensional Lorentz system in the
predictive mode

Figure 16 is a plot of the prediction for the famous Lorentz system. It can be seen that
the ’predictive mode’ generates an almost perfect prediction. However, discrepancies in
the prediction and data can be seen more clearly in the plot for the Lorentz attractor in

28

Effect of Noise in Active Particle Reservoir Computing

Figure 17. Results for the 3-dimensional signal are obtained by coupling the 3-dimensional
input in the state space matrix using the reservoir responses. Figure 17 also does a
comparison between prediction from a noiseless and a noisy reservoir, the added noise
is along the equation 31, diffusion D = 0.08, and the attractors look very alike with
very little difference. The predictions can be further enhanced or analyzed with various
parameter adjustments. The rather successful prediction in part has to do with the
minimal task undertaken by the network in ’predictive mode’ since the network only
generates prediction one step ahead at any time step and consequently is not a good
representation of the learned input in the network or the network itself. Generative mode
on the other hand forces the network to make an independent signal prediction after
training without any reliance on current step data during the testing-prediction phase.
This allows for a better understanding of the internal activation in the network achieved
during training, further expanding opportunities for experimental methods to obtain a
longer and better time series prediction generation.

Figure 17: Comparing Lorentz attractor predictions for reservoir with and without noise,
in the prediction mode

4.1 Contrasting noisy & noiseless reservoirs

4.1.1 Results from a noiseless reservoir

Figure 18 is generated using a noiseless reservoir, following the equation 29 for reservoir
state activations. The parameters used to obtain the predictions are 35 real oscillators,
multiplex = 10, training length = 2000, and testing length = 2000. With an RMSE value
along the training length of RMSE = 0.08967, and the means square error (MSE) of the
1st 1000 step of MSW [1000] = 6.77092e− 5.

The obtained prediction in Figure 18 is a good prediction, especially in 1st 1000 steps as
is evident with target-prediction difference graphs in Figure 19.

29

Effect of Noise in Active Particle Reservoir Computing

Figure 18: Noiseless reservoir, Mackey-Glass prediction

Figure 19: Absolute difference between target data and prediction, for figure 18

4.1.2 Results from a noisy reservoir

The noisy reservoir follows the Equations 31 for the reservoir activation states. With a
noisy reservoir, the steady state input-driven response from the reservoir becomes noisy
as seen in Figure 6 from the theoretical chapter, making the reservoir state activations
noisy and ultimately adding noise to the state space matrix.

Figure 20: Generated predictions with a noisy reservoir

Additionally, the prediction results obtained in Figure 20 were obtained after extensive

30

Effect of Noise in Active Particle Reservoir Computing

simulation attempts and parameter searches, the important parameters of which are de-
scribed in section 4.4. Major parameters, changed in comparison to predictions in Figure
18, used for obtaining results in Figure 20 are Mout = 500, Min = 3, an input scaling
factor of 11 and 35 real oscillators.

Figure 21: Absolute difference between target data and prediction, for Figure 20

When comparing Figure 21 and Figure 19 it might seem the errors produced in a noisy
reservoir are rather smaller than those in the noiseless reservoir, this is not true as is
clearly evident by the prediction trajectories in figure 20. This happens due to the fair
amount of positive and negative noise deviations cancelling themselves out in an absolute
value graph and hence the extensive use of RMSE as the more accurate picture of the
error. Additionally, when comparing the graphs in Figure 21 and Figure 19 one can also
notice that the prediction to target divergences does not happen in a significant way until
the 1000 time step mark in Figure 19 of the noiseless reservoir, while the signal to target
divergence can be noticed much earlier in Figure 21 around the 200 step mark.

Figure 22: Comparing attractors, of the generated predictions, from Noisy and Noiseless
reservoir

Figure 22, does a comparison between attractors produced by the prediction from a noisy
reservoir with that of a noiseless reservoir. The attractor is produced by plotting the

31

Effect of Noise in Active Particle Reservoir Computing

predicted signal with 62 steps delayed version of the same and the same is done with the
test data for comparison. Given the bounded nature of an attractor, the visual can aid
greatly in understanding the long-term evolution of the time series signal without having
to go through a very long time series plot [Doyne Farmer (1982)]. As can be seen in
the plot on the left in Figure 22, the prediction does retain a great deal of the long-term
evolution of the system, but with significant noise.

Figure 23: Multiple (11) simulation predictions [Grey], compared with target signal

Figure 24: Average of multiple simulations compared with the target signal

Figure 23 and Figure 24 are results obtained after 11 simulation runs. The prediction di-
vergence from the target can be seen more clearly in the averaged prediction in Figure 24.
While prediction is fairly good until around time step 200, there is phasing out between
the prediction and target signal. This prediction phasing out is a common observation in
RC predictions as can also be seen in Figure 18. However, the prediction performed using
a noisy reservoir, phases out from the target signal faster than the noiseless reservoir, and
this phase difference grows over time steps.

The growth in phase difference between the target and the predicted signal might po-
tentially be due to a lower dependence of the time series signal over the increasing past

32

Effect of Noise in Active Particle Reservoir Computing

Figure 25: 3000 step prediction with a noisy reservoir on an online mode

time. Since the Mackey-Glass signal itself is a time-delayed signal the dependence of any
current value in the signal might have a decreasing or fading relation to the past states
of the signal after the time-delayed point in the past. This problem of the signal’s fading
relation to its past can be resolved for purpose of a better long-term prediction by updat-
ing the reservoir after the prediction with new past data. This is called an online network
or the online method.

Figure 25 is an implementation of the online method with a noisy reservoir, where the
state space matrix is updated every 200-time steps with the reservoir activation from
the past data during the testing phase. However, the good-looking performance in the
Figure is a little misleading since there are differences in performance at different parts
of the Mackey-Glass signal and since the online mode does not allow for any changes in
parameters during a long prediction, this leads to bad predictions in parts of the signal
that are not shown in the figure.

4.2 Noise to performance relation

To better understand the effects of noise on prediction, RMSE values were collected from
each simulation, a total simulation run of 200 times with varied variances of noise in the
reservoir. Every other parameter was fixed as in the prediction obtained in Figure 20.
The First 100 simulations were run between dσ ∈ [0.001, 0.1] and the next 100 between
dσ ∈ [0.1, 1.0], the results of which are shown in Figure 26.

The obtained data is then fitted with a polynomial curve fit to make sense of the pattern
in the data. The system has a linear growth in error with increased variance between
dσ ∈ [0.001, 0.1], as can be seen in the plot on the left in Figure 26. Additionally, the
system has a cubic growth for a larger variance of dσ ∈ [0.1, 1.0] and also seems to have
a growing variability in performance with growing variance dσ in noise, as can be seen in
the plot on the right in Figure 26.

33

Effect of Noise in Active Particle Reservoir Computing

These relations can be further studied with larger computing power for various param-
eters, especially the ones mentioned in section 4.4. Since predictions do seem to show
improvements with certain parameter adjustments, these performance observations some-
times change due to the behavior of the noise in the system adding uncertainty to the
viability of the chosen parameter combination. Hence thorough parameter sweep with
better computing could give a better understanding of the effect of noise in the reservoir
on the prediction performance. Ultimately, reducing the noise in the reservoir itself can
benefit significantly towards better performance, and the Brownian noise experienced in
a real physical reservoir could be reduced by reducing the temperature of the oscillator
environment. Though this is a much tougher solution to implement.

Figure 26: RMSE plot with 100 simulations between dσ ∈ [0.001, 0.1] [left] & 100 simu-
lations between dσ ∈ [0.001, 0.1]

34

Effect of Noise in Active Particle Reservoir Computing

4.3 Predictive performance analysis of the system with different
signals

In an effort to understand the system, various signal predictions were attempted. The
noiseless reservoir system generally does a great job at predicting simple signals such as
the damped oscillation in Figure 27. Whereas the system does a terrible job of predicting
a stochastic signal such as the one in Figure 28. This might simply be due to the stochastic
signals having a past independent behavior at any time step, making it a non-ideal type
of signal to predict using this system which exclusively exploits past dependence of states
in a signal.

Figure 27: Damped oscillation prediction

Figure 28: Unsuccessful attempt in prediction Tesla stock prices

4.4 Influential parameters for noise mitigation

This section discusses the two main parameters observed to make a significant difference
in prediction performance improvements with a noisy reservoir.

4.4.1 Effect of time multiplexing on performance with a noisy reservoir

The method of Time multiplexing Mout ≥ Min as discussed in section 3.2.3 makes a sig-
nificant difference in the prediction performance of the network. The parameter used in
generating the predictions in Figure 20 and Figure 25 was of Mout = 500 and Min = 3.
In general, a small Min and a large Mout tended to give a good performance, as observed
through plots and RMSE values.

35

Effect of Noise in Active Particle Reservoir Computing

This observed effect is very likely due to the structure multiplexing, where a large value of
Mout stacks a large number of activations from the past oscillator states into the current
state vector at any moment in testing. This might allow some dissolution of noise through
the presence of a large number of past activations combined with a smaller number of
current activations. Additionally, this also increases the temporal memory of the network
as discussed in section 3.1.2. A larger temporal memory might be an important factor in
mitigating the effect of a noisy reservoir.

4.4.2 Effects of scaling input on noise

One of the interesting effects observed while working with the system was with input
scaling i.e., by increasing the amplitude of the input, there was an increase in prediction
performance with the noisy reservoir. This idea of input scaling was also mentioned in
the original Echo-state-network paper [Jaeger (2001)] and additionally in [Lukoševičius
and Jaeger (2009b)]. However, this amplification has a limit in this system, since the
input-induced angle in the time-delayed active particle oscillation system is physically
constrained to repetition, with an angle of at most 90-180 degrees.

A simple mathematical description of this can be written as,

Win ·
(

1
Λ · µ (n)

)
where Λ is the amplitude or rather the added positive multiplication factor. Conversely,
this could also be done by increasing the variance of random number prediction within
Win. This effect could be better implemented by the method of input signal normaliza-
tion. Every signal, no matter the amplitude, can be normalized with an amplitude that
performs the best within the given physical reservoir. Otherwise, the amplitude itself
can be used as an additional parameter to achieve the best performance by searching the
optimal point of activation.

The effectiveness of input scaling is very likely due to its effect on the nonlinear intro-
duced by the reservoir. Different input scaling can affect the nonlinearity of the reservoir
response. The input response of a scaled signal in a time-delayed active particle oscil-
lation can produce a richer nonlinear response than otherwise. This response can then
be tailored based on the type of time series signal the system tries to predict: for some
signals a more nonlinear response might not be good for training predictions. However,
with a noisy reservoir, a large input scaling between 9-21 was effective in reducing some
noise and improving predictions. Additionally, as the Brownian noise remains relatively
intrinsic to the reservoir setup, the amplification of the input signal can be optimized
for better nonlinear activation response, which might otherwise be drowned out by the
Brownian noise.

There is also an observed interaction between the input scaling and the multiplexing
method. Previously in the case of a noisy reservoir, increasing the size of the state vector
or the state matrix using much larger values for ’Multiplex-in’ and ’Multiplex-out’ did

36

Effect of Noise in Active Particle Reservoir Computing

Figure 29: Prediction comparison with input scaling of 11 and just 1, with first 100 step
RMSE

not yield any significant performance benefits. This was contrary to the case of a normal
Echo state network, with which a larger state matrix generally led to increased perfor-
mance. However, with the use of λ as an additional parameter, there was a noticeable
increase in performance with the increase in state space matrix size through large values
of ’Multiplex out’.

4.5 Interpretable machine learning

Machine Learning methods and Recurrent Neural Networks are often not explainable.
The success of the network predictions is often analytically extremely hard to derive or
sometimes just plain indecipherable. This hinders an educated exploration or adds un-
certainty to the safety of real-world deployments of these methods, regardless of their
amazing success [Molnar et al. (2020)].

The flavor of non-linearity chosen for input expansion makes a huge difference in the effec-
tiveness of the predictions as described in section 3.1.1 [Shalizi (2020)]. Since the normal
echo-state network uses a random state coupling matrix as its reservoir, this allows more
flexibility in flavors of nonlinearity, which can be effective for various signal predictions.
It must also be noted though, that this also makes it much harder to backtrack or reason
a successful prediction.

The RC computing system is one the simplest methods of Recurrent Neural Network,
with only one matrix (state collection matrix) to optimize the training data set. The
ability RNNs to couple past state activations with current state activation makes it a
great method for training time series signals that are dependent on their past values. The
time-delayed oscillation active particle reservoir system in this project uses a time-delayed
oscillator to project a time-delayed signal (The Mackey-Glass signal) into a multidimen-
sional feature space. Exploiting this emergent linearity, weights for predictions are trained
using linear reg regression to predict a nonlinear signal. Making this system a much more

37

Effect of Noise in Active Particle Reservoir Computing

interpretable method of machine learning, where the dynamical system behavior of the
reservoir can be used to make reasonable conclusions on the effective predictions and er-
rors.

4.6 Conclusion

This project simulates a collection of active particle time-delayed oscillators to produce
a collection of nonlinear activations, which are then trained with a linear reg regression
method to produce weights or trained coefficients to predict a time series signal. Which
is then contrasted with the expected test output time series signal. Further the same is
repeated with a simulation of active particle time-delayed oscillation but this time with
induced Brownian motion affecting such oscillations.

The dynamics of the reservoir follow a form of the delayed differential equation through
the input-driven active particle oscillations. The choice of nonlinearity through time-
delayed Sine activation, for the reservoir, might make this system uniquely positioned to
make good predictions on a delayed time series signal such as the Mackey-Glass signal
or signals from the delayed differentials such as the signal out of Ikeda delay differential
equation. And, given the intrinsic nature of Reservoir computing and RNNS in general,
the system is only well positioned to predict signals which have some dependence on the
past states and would perform rather poorly on signals resembling stochastic processes.
Additionally, for signals with very large time-delayed dependencies, Echo-state networks
would need large training and memory parameters, i.e very large state space collection
matrix to gain enough information to identify motifs for predictions.

The predictions performed by a reservoir network activation, with Brownian motion, are
generally more erroneous than the predictions from the ideal noiseless reservoir activation.
This might be due to the effect of noise in hampering the quality of network memory and
reducing the effectiveness of the chosen nonlinearity for input expansion. And hence
measures should be taken to try and reduce the effect of noise or reduce the noise itself.
In this project, two methods of effective noise mitigation were found and explored. The
method of time multiplexing through Mout ≥ Min, a large value of multiplex-out and
a small value of multiplex-in was effective in producing better prediction results from a
noisy reservoir. Additionally, maximum input scaling to get the best non-linear activation
out of the reservoir was also effective in yielding better predictions out of a noisy reservoir.

38

Effect of Noise in Active Particle Reservoir Computing

A Appendix

V

Effect of Noise in Active Particle Reservoir Computing

References

Approximation of dynamical systems by continuous time recurrent neural networks
(1993). Neural Netw. 6(6): 801–806.

Bezanson, J., Karpinski, S., Shah, V. B. and Edelman, A. (2012). Julia: A fast dynamic
language for technical computing.

Bianchi, F., Livi, L., Alippi, C. (2017). Multiplex visibility graphs to investigate recur-
rent neural network dynamics.

Doyne Farmer, J. (1982). Chaotic attractors of an infinite-dimensional dynamical sys-
tem, Physica D 4(3): 366–393.

Einstein, A. and Cowper, A. D. (n.d.). ALBERT EINSTEIN, PH.D, https://www.
maths.usyd.edu.au/u/UG/SM/MATH3075/r/Einstein_1905.pdf. Accessed: 2022-11-
23.

Jaeger, H. (2001). The“ echo state” approach to analysing and training recurrent neural
networks-with an erratum note’, 148.

Kokot, G., Faizi, H. A., Pradillo, G. E., Snezhko, A. and Vlahovska, P. M. (2022).
Spontaneous self-propulsion and nonequilibrium shape fluctuations of a droplet en-
closing active particles, Communications Physics 5(1): 1–7.

Lenzen, F. and Scherzer, O. (2004). Tikhonov type regularization methods: History and
recent progress, Proceeding Eccomas 2004.

Lukoševičius, M. (2012). A practical guide to applying echo state networks, Lecture
Notes in Computer Science, Lecture notes in computer science, Springer Berlin Hei-
delberg, Berlin, Heidelberg, pp. 659–686.

Lukoševičius, M. and Jaeger, H. (2009a). Reservoir computing approaches to recurrent
neural network training, Computer Science Review 3(3): 127–149.

Lukoševičius, M. and Jaeger, H. (2009b). Reservoir computing approaches to recurrent
neural network training, Computer Science Review 3(3): 127–149.

Mackey, M. C. and Glass, L. (1977). Oscillation and chaos in physiological control sys-
tems, Science 197(4300): 287–289.

McCulloch, W. S. and Pitts, W. (1943). A logical calculus of the ideas immanent in
nervous activity, Bull. Math. Biophys. 5(4): 115–133.

Molnar, C., Casalicchio, G. and Bischl, B. (2020). Interpretable machine learning – a
brief history, State-of-the-Art and challenges.

Pavliotis, G. A. (2014). The langevin equation, in G. A. Pavliotis (ed.), Stochastic Pro-
cesses and Applications: Diffusion Processes, the Fokker-Planck and Langevin Equa-
tions, Springer New York, New York, NY, pp. 181–233.

VI

https://www.maths.usyd.edu.au/u/UG/SM/MATH3075/r/Einstein_1905.pdf
https://www.maths.usyd.edu.au/u/UG/SM/MATH3075/r/Einstein_1905.pdf

Effect of Noise in Active Particle Reservoir Computing

Röhm, A. and Lüdge, K. (2018). Multiplexed networks: reservoir computing with vir-
tual and real nodes, J. Phys. Commun. 2(8): 085007.

Shalizi, C. (2020). Extending linear classifiers with nonlinear features, 36-462/662,
Spring.

Sherstinsky, A. (2018). Fundamentals of recurrent neural network (RNN) and long
Short-Term memory (LSTM) network.

Sjögren, L. (n.d.). Stochastic processes lecture notes ch. 6: Brownian motion: Langevin
equation.

Szabados, T. (2010). An elementary introduction to the wiener process and stochastic
integrals.

Tanaka, G., Yamane, T., Héroux, J. B., Nakane, R., Kanazawa, N., Takeda, S., Nu-
mata, H., Nakano, D. and Hirose, A. (2019). Recent advances in physical reservoir
computing: A review, Neural Networks 115: 100–123.
URL: https://www.sciencedirect.com/science/article/pii/S0893608019300784

Terpstra, C. R. (2016). Delay differential equations, University of Groningen .

The Editors of Encyclopedia Britannica (2022). Brownian motion.

Wang, W. and Lu, Y. (2018). Analysis of the mean absolute error (MAE) and the root
mean square error (RMSE) in assessing rounding model, IOP Conf. Ser.: Mater. Sci.
Eng. 324(1): 012049.

Wang, X., Chen, P.-C., Kroy, K., Holubec, V. and Cichos, F. (2022). Spontaneous vor-
tex formation by microswimmers with retarded attractions.

VII

	Introduction
	Theoretical background
	Time-delayed Oscillations of Active particles
	Active particle oscillations

	Brownian motion-induced noise
	Brownian Motion
	Brownian motion on oscillating active particle

	Reservoir computing
	Recurrent neural networks, a brief discussion
	Echo state networks and time series prediction
	Activation State/Kernel : x(n)
	Readouts out of the reservoirs

	Experimental analogous computational methods
	The reservoir
	Nonlinear input expansion
	Temporal memory

	Active particle reservoir computing
	State space collection matrix
	Noisy reservoir
	Coupling through multiplexing

	Code description
	Reservoir simulation
	Building the state space matrix
	Regression
	Testing and prediction

	Results and comparative analysis
	Contrasting noisy & noiseless reservoirs
	Results from a noiseless reservoir
	Results from a noisy reservoir

	Noise to performance relation
	Predictive performance analysis of the system with different signals
	Influential parameters for noise mitigation
	Effect of time multiplexing on performance with a noisy reservoir
	Effects of scaling input on noise

	Interpretable machine learning
	Conclusion

	Appendix

